Using Python Requests With Elasticsearch⚓︎
Summary⚓︎
Elastic provides a great elasticsearch library for python. However if you have lots of other rest services you might prefer to standarise on using python requests for interacting with all of your services.
This article illustrates how to use python requests with elasticsearch.
Setup⚓︎
I have a docker-compose in the following github repo with nginx(with a self signed SSL), kibana and elasticsearch running. https://github.com/swarmee/projects/tree/master/elastic-stack-6.4
This docker-compose file includes a short lived container that loads up a nested template and some sample data. So you should just be able to run docker-compose up
to bring everything up.
Remember that your host needs to have the following setting.
sudo sysctl -w vm.max_map_count=262144
Once everything is booted up you will be able to access:
- Kibana @ https://localhost/kibana with the username: test and password: test
- Elasticsearch @ https://localhost/ again with the username: test and password: test
The first time you open up Kibana it will force you to setup a default index pattern for kibana --> please use real-estate-sales
and saleDate as the time series.
Installing Python Requests⚓︎
Python requests can be installed using sudo apt-get install python-requests
or using pip (if you are lucky enough to have it) sudo pip install requests
Confirm Connection Between Python and Elasticsearch⚓︎
Now fire up your python IDE (or vi) and copy in the below.
import requests
r = requests.get('https://localhost/search', auth=('test', 'test'),verify=False)
print(r.text)
Now to Do the Normal Python Thing⚓︎
We can search nested indexes in elasticsearch then output the JSON.
import json
import requests
import urllib3
urllib3.disable_warnings()
host = 'localhost'
requestHeaders = {'user-agent': 'my-python-app/0.0.1', 'content-type': 'application/json'}
requestURL = 'http://%s:9200/real-estate-sales/_search' % (host)
nameSearchTerm = input('Enter Name to search for --> ')
def populateJson(nameSearchTerm):
return {
"query": {
"nested": {
"path": "role.party.name",
"query": {
"match": {
"role.party.name.fullName": nameSearchTerm
}
}
}
},
"aggs": {
"partyNesting": {
"nested": {
"path": "role.party"
},
"aggs": {
"partyFilter": {
"filter": {
"nested": {
"path": "role.party.name",
"query": {
"match": {
"role.party.name.fullName": nameSearchTerm
}
}
}
},
"aggs": {
"nameNesting": {
"nested": {
"path": "role.party.name"
},
"aggs": {
"nameDetails": {
"terms": {
"field": "role.party.name.fullName.keyword",
"size": 10
}
}
}
},
"addressNesting": {
"nested": {
"path": "role.party.address"
},
"aggs": {
"nameDetails": {
"terms": {
"field": "role.party.address.streetAddress.keyword",
"size": 10
}
}
}
},
"accountNesting": {
"nested": {
"path": "role.party.account"
},
"aggs": {
"nameDetails": {
"terms": {
"field": "role.party.account.number",
"size": 10
}
}
}
},
"identificationNesting": {
"nested": {
"path": "role.party.identification"
},
"aggs": {
"nameDetails": {
"terms": {
"field": "role.party.identification.identifier.keyword",
"size": 50
}
}
}
}
}
}
}
}
},
"size": 0
}
requestBody = populateJson(nameSearchTerm)
r = requests.get(requestURL,
json=requestBody,
auth=('test', 'test'),
verify=False,
headers=requestHeaders)
r = r.json()
print(json.dumps(r , sort_keys = True, indent = 2, ensure_ascii = False))